Karamba3D v3
  • Welcome to Karamba3D
  • New in Karamba3D 3.1
  • See Scripting Guide
  • See Manual 2.2.0
  • 1 Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2 Getting Started
    • 2 Getting Started
      • 2.1 Karamba3D Entities
      • 2.2 Setting up a Structural Analysis
        • 2.2.1 Define the Model Elements
        • 2.2.2 View the Model
        • 2.2.3 Add Supports
        • 2.2.4 Define Loads
        • 2.2.5 Choose an Algorithm
        • 2.2.6 Provide Cross Sections
        • 2.2.7 Specify Materials
        • 2.2.8 Retrieve Results
      • 2.3 The Karamba3D Menu
      • 2.4 User Settings
      • 2.5 Physical Units
      • 2.6 Asynchronous Execution of Karamba3D Components
      • 2.7 Quick Component Reference
  • 3 In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 License
    • 3.1 Model
      • 3.1.1 Assemble Model
      • 3.1.2 Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6 Create Linear Element
        • 3.1.6.1 Line to Beam
        • 3.1.6.2 Line to Truss
        • 3.1.6.3 Connectivity to Beam
        • 3.1.6.4: Index to Beam
      • 3.1.7 Create Surface Element
        • 3.1.7.1: Mesh to Shell
        • 3.1.7.2: Mesh to Membrane
      • 3.1.8: Modify Element
      • 3.1.9: Point-Mass
      • 3.1.10: Disassemble Element
      • 3.1.11: Make Element-Set
      • 3.1.12: Orientate Element
      • 3.1.13: Dispatch Elements
      • 3.1.14: Select Elements
      • 3.1.15: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4 Load-Case-Combinations
        • 3.2.5.1 Load-Case-Combinator
        • 3.2.5.2 Disassemble Load-Case-Combinaton
        • 3.2.5.3 Load-Case-Combination Settings
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section
      • 3.3.5: Eccentricity on Beam and Cross Section
      • 3.3.6: Modify Cross Section
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints
      • 3.4.2: Beam-Joint Agent
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement
      • 3.6.12: Tension/Compression Eliminator
    • 3.7 Results
      • 3.7.1 General Results
        • 3.7.1.1 ModelView
        • 3.7.1.2 Result Selector
        • 3.7.1.3 Deformation-Energy
        • 3.7.1.4 Element Query
        • 3.7.1.5 Nodal Displacements
        • 3.7.1.6 Principal Strains Approximation
        • 3.7.1.7 Reaction Forces
        • 3.7.1.8 Utilization of Elements
        • 3.7.1.9 ReactionView
      • 3.7.2 Results on Beams
        • 3.7.2.1 BeamView
        • 3.7.2.2 Beam Displacements
        • 3.7.2.3 Beam Forces
        • 3.7.2.4 Node Forces
      • 3.7.3 Results on Shells
        • 3.7.3.1 ShellView
        • 3.7.3.2 Line Results on Shells
        • 3.7.3.3 Result Vectors on Shells
        • 3.7.3.4 Shell Forces
        • 3.7.3.5 Shell Sections
    • 3.8 Export
      • 3.8.1 Export Model to DStV
      • 3.8.2 Json/Bson Export and Import
      • 3.8.3 Export Model to SAF
      • 3.8.4 Export/Import Model to and from Speckle (WIP)
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting
      • 3.9.13: Mapper
      • 3.9.14: Interpolate Shape
      • 3.9.15: Connecting Beams with Stitches
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
      • 3.9.18 Surface To Truss
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Older Versions
      • Version 2.2.0
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Performance Optimization in Karamba3D
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page
  1. 2 Getting Started
  2. 2 Getting Started
  3. 2.2 Setting up a Structural Analysis

2.2.5 Choose an Algorithm

Previous2.2.4 Define LoadsNext2.2.6 Provide Cross Sections

Last updated 10 months ago

Karamba3D provides various options for analyzing a structural model. The “Analyze” component (see Fig. 2.2.5.1) calculates the deformation and stresses of a model under external loads. The “Deformation” slider in the “Display Scales” submenu of the “ModelView” component allows scaling the graphical output of the displacements. The default magnification factor is 50, but this can be adjusted if the numeric range of the “Deformation” slider does not fit.

Double-clicking the knob of the slider opens a window for adjusting the slider settings.

To obtain the numerical values corresponding to the colors of the utilization output, use the “Legend” component as shown in Fig. 2.2.5.1. The stress-wise utilization output of the “BeamView” component is calculated by dividing the normal stress at a point of the cantilever by the strength of its material. Negative values indicate compression, while positive values indicate tension.

However, stress-wise utilization can be misleading. Slender beams under axial compression may buckle and collapse before the compressive stresses reach the material strength. In such cases, use the “Utilization” component, which includes stability considerations.

Fig. 2.2.5.1: Deflection and stress-strength ratio of a cantilever beam with a point-load at its tip