Karamba3D v3
  • Welcome to Karamba3D
  • New in Karamba3D 3.1
  • See Scripting Guide
  • See Manual 2.2.0
  • 1 Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2 Getting Started
    • 2 Getting Started
      • 2.1 Karamba3D Entities
      • 2.2 Setting up a Structural Analysis
        • 2.2.1 Define the Model Elements
        • 2.2.2 View the Model
        • 2.2.3 Add Supports
        • 2.2.4 Define Loads
        • 2.2.5 Choose an Algorithm
        • 2.2.6 Provide Cross Sections
        • 2.2.7 Specify Materials
        • 2.2.8 Retrieve Results
      • 2.3 The Karamba3D Menu
      • 2.4 User Settings
      • 2.5 Physical Units
      • 2.6 Asynchronous Execution of Karamba3D Components
      • 2.7 Quick Component Reference
  • 3 In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 License
    • 3.1 Model
      • 3.1.1 Assemble Model
      • 3.1.2 Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6 Create Linear Element
        • 3.1.6.1 Line to Beam
        • 3.1.6.2 Line to Truss
        • 3.1.6.3 Connectivity to Beam
        • 3.1.6.4: Index to Beam
      • 3.1.7 Create Surface Element
        • 3.1.7.1: Mesh to Shell
        • 3.1.7.2: Mesh to Membrane
      • 3.1.8: Modify Element
      • 3.1.9: Point-Mass
      • 3.1.10: Disassemble Element
      • 3.1.11: Make Element-Set
      • 3.1.12: Orientate Element
      • 3.1.13: Dispatch Elements
      • 3.1.14: Select Elements
      • 3.1.15: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4 Load-Case-Combinations
        • 3.2.5.1 Load-Case-Combinator
        • 3.2.5.2 Disassemble Load-Case-Combinaton
        • 3.2.5.3 Load-Case-Combination Settings
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section
      • 3.3.5: Eccentricity on Beam and Cross Section
      • 3.3.6: Modify Cross Section
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints
      • 3.4.2: Beam-Joint Agent
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement
      • 3.6.12: Tension/Compression Eliminator
    • 3.7 Results
      • 3.7.1 General Results
        • 3.7.1.1 ModelView
        • 3.7.1.2 Result Selector
        • 3.7.1.3 Deformation-Energy
        • 3.7.1.4 Element Query
        • 3.7.1.5 Nodal Displacements
        • 3.7.1.6 Principal Strains Approximation
        • 3.7.1.7 Reaction Forces
        • 3.7.1.8 Utilization of Elements
        • 3.7.1.9 ReactionView
      • 3.7.2 Results on Beams
        • 3.7.2.1 BeamView
        • 3.7.2.2 Beam Displacements
        • 3.7.2.3 Beam Forces
        • 3.7.2.4 Node Forces
      • 3.7.3 Results on Shells
        • 3.7.3.1 ShellView
        • 3.7.3.2 Line Results on Shells
        • 3.7.3.3 Result Vectors on Shells
        • 3.7.3.4 Shell Forces
        • 3.7.3.5 Shell Sections
    • 3.8 Export
      • 3.8.1 Export Model to DStV
      • 3.8.2 Json/Bson Export and Import
      • 3.8.3 Export Model to SAF
      • 3.8.4 Export/Import Model to and from Speckle (WIP)
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting
      • 3.9.13: Mapper
      • 3.9.14: Interpolate Shape
      • 3.9.15: Connecting Beams with Stitches
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
      • 3.9.18 Surface To Truss
      • 3.9.19 Head-Up Display Legend
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Older Versions
      • Version 2.2.0
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Performance Optimization in Karamba3D
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page
  1. Appendix
  2. A.2: Background information

A.2.5: Natural Vibrations, Eigen Modes and Buckling

The Eigen-modes of a structure describe the shapes to which it can be deformed most easily in ascending order. Due to this the “Eigen Modes”-component can be used to detect kinematic modes.

An Eigen-mode x⃗\vec{x}x is the solution to the matrix-equation C~⋅x⃗=λ⋅x⃗\utilde{C} \cdot \vec{x} = \lambda \cdot \vec{x}C​⋅x=λ⋅x which is called the special eigen-value problem. Where C~\utilde{C}C​ is a matrix, x⃗\vec{x}x a vector and λ\lambdaλ a-scalar (that is a number) called eigenvalue. The whole thing does not necessarily involve structures. Eigen-modes and eigenvalues are intrinsic properties of a matrix. When applied to structures then C~\utilde{C}C​ stands for the stiffness-matrix whose number of rows and columns corresponds to the number of degrees of freedom of the structural system. x⃗\vec{x}x is an eigen-mode as can be computed with Karamba3D.

Vibration modes x⃗\vec{x}x of structures result from the solution of a general Eigenvalue problem. This has the form C~⋅x⃗=ω2⋅M~⋅x⃗\utilde{C} \cdot \vec{x} = \omega^2 \cdot \utilde{M} \cdot \vec{x}C​⋅x=ω2⋅M​⋅x. In a structural contextM~\utilde{M}M​is the mass-matrix which represents the effect of inertia. The scalarω\omegaωcan be used to compute the eigenfrequencyfffof the dynamic system from the equationf=ω/2πf = \omega / 2\pif=ω/2π. In the context of structural dynamics eigen-modes are also called normal-modes or vibration-modes.

The “Buckling Modes”-component calculates the factor with which the normal forces NIIN^{II}NII need to be multiplied in order to cause structural instability. The buckling factors are the eigenvalues of the general Eigenvalue problem C~⋅x⃗+λ2⋅CG~⋅x⃗=0\utilde{C} \cdot \vec{x} + \lambda^2 \cdot \utilde{C_{G}} \cdot \vec{x} = 0C​⋅x+λ2⋅CG​​⋅x=0. Here C~\utilde{C}C​ is the elastic stiffness matrix and CG~\utilde{C_{G}}CG​​ the geometric stiffness matrix. The latter captures the influence of normal forces NIIN^{II}NII on a structure’s deformation response.

PreviousA.2.4: Performance Optimization in Karamba3DNextA.2.6: Approach Used for Cross Section Optimization

Last updated 8 months ago