Karamba3D v3
  • Welcome to Karamba3D
  • New in Karamba3D 3.1
  • See Scripting Guide
  • See Manual 2.2.0
  • 1 Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2 Getting Started
    • 2 Getting Started
      • 2.1 Karamba3D Entities
      • 2.2 Setting up a Structural Analysis
        • 2.2.1 Define the Model Elements
        • 2.2.2 View the Model
        • 2.2.3 Add Supports
        • 2.2.4 Define Loads
        • 2.2.5 Choose an Algorithm
        • 2.2.6 Provide Cross Sections
        • 2.2.7 Specify Materials
        • 2.2.8 Retrieve Results
      • 2.3 The Karamba3D Menu
      • 2.4 User Settings
      • 2.5 Physical Units
      • 2.6 Asynchronous Execution of Karamba3D Components
      • 2.7 Quick Component Reference
  • 3 In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 License
    • 3.1 Model
      • 3.1.1 Assemble Model
      • 3.1.2 Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6 Create Linear Element
        • 3.1.6.1 Line to Beam
        • 3.1.6.2 Line to Truss
        • 3.1.6.3 Connectivity to Beam
        • 3.1.6.4: Index to Beam
      • 3.1.7 Create Surface Element
        • 3.1.7.1: Mesh to Shell
        • 3.1.7.2: Mesh to Membrane
      • 3.1.8: Modify Element
      • 3.1.9: Point-Mass
      • 3.1.10: Disassemble Element
      • 3.1.11: Make Element-Set
      • 3.1.12: Orientate Element
      • 3.1.13: Dispatch Elements
      • 3.1.14: Select Elements
      • 3.1.15: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4 Load-Case-Combinations
        • 3.2.5.1 Load-Case-Combinator
        • 3.2.5.2 Disassemble Load-Case-Combinaton
        • 3.2.5.3 Load-Case-Combination Settings
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section
      • 3.3.5: Eccentricity on Beam and Cross Section
      • 3.3.6: Modify Cross Section
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints
      • 3.4.2: Beam-Joint Agent
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement
      • 3.6.12: Tension/Compression Eliminator
    • 3.7 Results
      • 3.7.1 General Results
        • 3.7.1.1 ModelView
        • 3.7.1.2 Result Selector
        • 3.7.1.3 Deformation-Energy
        • 3.7.1.4 Element Query
        • 3.7.1.5 Nodal Displacements
        • 3.7.1.6 Principal Strains Approximation
        • 3.7.1.7 Reaction Forces
        • 3.7.1.8 Utilization of Elements
        • 3.7.1.9 ReactionView
      • 3.7.2 Results on Beams
        • 3.7.2.1 BeamView
        • 3.7.2.2 Beam Displacements
        • 3.7.2.3 Beam Forces
        • 3.7.2.4 Node Forces
      • 3.7.3 Results on Shells
        • 3.7.3.1 ShellView
        • 3.7.3.2 Line Results on Shells
        • 3.7.3.3 Result Vectors on Shells
        • 3.7.3.4 Shell Forces
        • 3.7.3.5 Shell Sections
    • 3.8 Export
      • 3.8.1 Export Model to DStV
      • 3.8.2 Json/Bson Export and Import
      • 3.8.3 Export Model to SAF
      • 3.8.4 Export/Import Model to and from Speckle (WIP)
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting
      • 3.9.13: Mapper
      • 3.9.14: Interpolate Shape
      • 3.9.15: Connecting Beams with Stitches
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
      • 3.9.18 Surface To Truss
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Older Versions
      • Version 2.2.0
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Performance Optimization in Karamba3D
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page
  1. 3 In Depth Component Reference
  2. 3.3: Cross Section

3.3.1: Beam Cross Sections

Previous3.3: Cross SectionNext3.3.2: Shell Cross Sections

Last updated 7 months ago

Karamba3D offers five basic types of beam cross section:

  • circular tube – the default

  • hollow box section

  • filled trapezoid section

  • I-profile

Apart from the input-plugs that define the cross section geometry, the “Elem|Id”- and the “Ecce-loc”-input there are:

“Family”

“Name"

The identifier of a cross section – need not be unique. Enable “CroSec names” in "ModelView"s “RenderSettings”-submenu in order to view them.

“Color”

Lets one define a color for a cross section. In order to see it enable “Cross sections” in submenu “Colors” of the “ModelView”-component and activate “CroSec section” in submenu “Render Settings” of the “BeamView”-component.

“Material”

Sets the material of the cross section. Indirect material assignments via the “Assemble”-component override direct definition of the cross section material.

Fig. 3.3.1 shows a cantilever with cross section properties defined directly at the “LineToBeam”-component. Without eccentricities defined, the beam axis always coincides with the centroid of a cross section. Changing e.g the upper flange width of an I-section therefore results in a slight movement of the whole section in the local Z-direction. In case the position of e.g. the upper side of a cross section needs to be fixed, specify an eccentricity. This can be done either via a specific component (see section ) or through the input-plug “Ecce-loc”. Provide a vector there in order to move the cross sections relative to the beam axis. The given eccentricity is relative to the local coordinate system of the beam. The resulting position of the centroid can be retrieved from the “Disassemble Cross Section”-component (see section ).

Each cross section belongs to a family. When doing cross section optimization (see section ), Karamba3D selects only profiles that belong to the same family as the original section. Families can be composed of arbitrary section types

3.3.7
3.3.4
3.5.8
35KB
differentCroSecs.gh
Fig. 3.3.1: Cantilever with four different kinds of cross section